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Abstract—Dynamic IP router table schemes, which have recently been proposed in the literature, perform an IP lookup or an online

prefix update in Oðlog2jT jÞ memory accesses (MAs). In terms of lookup time, they are still slower than the full expansion/compression

(FEC) scheme (compressed next-hop array/code word array (CNHA/CWA)), which requires exactly (at most) three MAs, irrespective

of the number of prefixes jT j in a routing table T . The prefix updates in both FEC and CNHA/CWA have a drawback: Inefficient offline

structure reconstruction is arguably the only viable solution. This paper solves the problem. We propose the use of lexicographic

ordered prefixes to reduce the offline construction time of both schemes. Simulations on several real routing databases, run on the

same platform, show that our approach constructs FEC (CNHA/CWA) tables in 2.68 to 7.54 (4.57 to 6) times faster than that from

previous techniques. We also propose an online update scheme that, using an updatable address set and selectively decompressing

the FEC and CNHA/CWA structures, modifies only the next hops of the addresses in the set. Recompressing the updated structures,

the resulting forwarding tables are identical to those obtained by structure reconstructions, but are obtained at much lower

computational cost. Our simulations show that the improved FEC and CNHA/CWA outperform the most recent Oðlog2jT jÞ schemes in

terms of lookup time, update time, and memory requirement.

Index Terms—Dynamic router tables, IP address lookup, lexicographic ordering, online prefix updates.

Ç

1 INTRODUCTION

THE IP address lookup in a router decides the next hop to
forward each incoming packet toward its destination

and it is still the bottleneck among the major tasks of a
router [15]. A router maintains a list of pairs (prefix, next
hop) and, as part of its forwarding task, the router has to
quickly find the longest prefix that matches the W -bit
destination address (W ¼ 32 bits in IPv4) of an incoming
packet. Fig. 1 shows an example of a set of prefixes with
their corresponding next hops. In this example, a destina-
tion address 200.27.112.170 matches all prefixes except
200.27.240/20 and 200.27.128/20 and, therefore, the router
should forward the packet to a next hop C since 11001000
00011011_0111� is the longest matching prefix (LMP).

An ideal scheme for an IP lookup solution includes fast
lookup time, fast prefix update time, small memory require-
ment, and good scalability with respect to both the number
and length of IP addresses [15]. The most important measure
is obviously the lookup time since failure to meet the required
time may result in loss of packets. Nevertheless, one should

also consider the other metrics [15]. Every time there is a
route change, for example, route replenishment, route
failure, or route repair, one should update the contents of
the router table to reflect the change. Table updates include
an alteration to the next hop of an existing prefix or that of
its default next hop and an insertion (deletion) of a new
(existing) pair (prefix, next hop). Small update time is
essential: Considering routing instability [6], update opera-
tions within 10 ms have been suggested [21].

The existing IP address lookup schemes fall into software

and hardware approaches [15]. For each case, there are two
different solutions to deal with prefix updates: offline and
online. In an offline scheme, update operations are batched
and the tables are periodically reconstructed [2], [3], [4], [5],
[15], [16], [17]. References [2] and [5] have suggested offline
software-based and hardware-based approaches, respec-
tively. Because the routing protocols need time to converge,
forwarding tables can be a little stale and therefore need not
change more than at most once per second [3]. Note that an
offline update scheme is acceptable if each table reconstruc-
tion can be done fast so that the table represents up-to-date
network routing information. A technique in [14] reduces
the construction time of the level-compressed trie (LC-trie)
[12], while Sahni and Kim [17] and Wang et al. [24]
improved the construction time of the multibit trie [21] and
the multiway search tree [7], respectively.

For online updates, several dynamic router tables for IP
lookup have been proposed [8], [9], [10], [11], [13], [18], [19],
[20]. A modification to the LC-Trie [12] for online updates is
described in [13]. The range encoding concept is proposed
in [18] to improve the Multi-Way-Multi-Column scheme [7]
so that each IP lookup or update can be performed in
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Oðlog2jT jÞ memory accesses (MAs) for a routing table T
with jT j prefixes. Lu and Sahni proposed a priority search
tree (PST) in [9], an enhanced interval tree in [10], and a
B-tree data structure in [8] for use in dynamic IP router
tables so that each IP lookup and prefix update can be
performed in Oðlog2jT jÞ. Reference [11] suggests the use of
prefix and interval partitioning to improve their dynamic
table structures.

In their survey paper, Ruiz-Sanchez et al. [15] have found
the full expansion/compression (FEC) [2] to be the fastest
software-based approach. With exactly three MAs per
IP lookup (irrespective of jT j), the FEC obviously outper-
forms the recently proposed approaches [8], [9], [10], [11],
[18], [19], which require Oðlog2jT jÞ MA (plus, presumably
unreported, � > 3 clock cycles due to more complex lookup
steps). On the other hand, with one MA or three MAs, the
hardware-based scheme compressed next-hop array/code word
array (CNHA/CWA) [5] is considerably faster than the
recently proposed technique in [22] and balanced routing table
(BART) search [23] that require five to nine and five to eight
MAs per IP lookup, respectively. Note that the fixed-stride trie
(FST) and variable-stride trie (VST) [21] can be tuned to provide
a worst-case lookup time of three MAs; however, FST (VST)
requires an additional 31 (35) clock cycles [21], in contrast to
three for FEC. Furthermore, as will be discussed in Section 5.4,
the average lookup time of FEC and CNHA/CWA is
significantly faster than that of FST and VST [17]. However,
a prefix update on either the FEC or CNHA/CWA scheme is
difficult. An offline structure reconstruction is arguably [1],
[15] the only viable update solution for both schemes and,
thus, more efficient prefix updates algorithms for both FEC
and CNHA/CWA are needed.

This paper proposes the use of decreasing lexicographic-
ordered prefixes to speed up the FEC and CNHA/CWA
construction time. The ordered prefixes help construct a set
of run length encoding (RLE) sequences that, in turn, find use
in the FEC and CNHA/CWA structures. Next, we describe
an online prefix update scheme, each for FEC and CNHA/
CWA. We employ an updatable address set to selectively
decompress the FEC and CNHA/CWA structures, modify-
ing only the next hops of the addresses in the set.
Recompressing the updated structures, the resulting tables
are identical to those obtained by the offline structure
reconstruction, but at much lower computational cost.

The layout of this paper is organized as follows: Section 2
presents the notations and background that describe the
FEC and CNHA/CWA schemes. Section 3 describes
properties of lexicographic-ordered prefixes and their use

in constructing RLE sequences. This section also discusses

the application of RLE sequences to construct the FEC and
CNHA/CWA structures. Section 4 explains the updatable

address set and shows how the concept can be applied to

enable the FEC and CNHA/CWA schemes for online

updates. In Section 5, we present our experimental results

by using the proposed techniques on several real routing

tables and compare them with some existing IP lookup
solutions. Finally, Section 6 concludes this paper.

2 NOTATIONS AND BACKGROUND

2.1 Notations

For a binary alphabet � ¼ f0; 1g, we denote the set of all

binary strings of length k (at most m) by ��k ð���m ¼ [mk¼0��kÞ.
Let �0

k ð�1
kÞ denote a string of 0s (1s) with length k. For two

binary strings �; v 2 ���m of length l� ¼ j�j and l� ¼ j�j,
respectively, we say that � is a prefix of v, denoted by

� ¼ prefixð�Þ, if the first l� � l� bits of � are equal to �.

Furthermore, � is the LMP of � in some set T of prefixes if

no other prefix of � is longer than �. We call � an exception of
� if the first l� � l� bits of � are equal to �. Let LMP ð�Þ be a

function that obtains the LMP of � from the set T and

exceptionð�Þ denote a function that returns all exceptions of

� in T . We denote by � � � the concatenation of � and �, that

is, a string whose first j�j bits equal � and whose last j�j bits

equal �. A prefix � is the aggregation of a set of W -bit IP
addresses �� that have � as a prefix, that is, �� ¼ � � ��W�j�j
and W ¼ 32 for IPv4. Given a string � and a set S of ��k, we

define � � S ¼ fxjx ¼ � � � with � 2 Sg. Let �ls represent a

substring of � from bit s with length l for 0 � s � j�j � 1

and l � j�j � s. As an example, for � ¼ 101001, �3
0 returns

101, whereas �3
3 returns 001.

A routing table T contains a list of pairs Ti ¼ ðpi; hiÞ,
where prefix pi 2 ���W and its next-hop interface hi is an

integer ½1 . . .H�, where H represents the total number of

next-hop interfaces. Assume that T contains a pair ð"; h"Þ,
where "ðh"Þ is an empty string (the default next-hop

interface). Let jT j denote the total number of prefixes in T .

A table T is sorted in decreasing lexicographic order if it
contains a sequence T1; T2; . . . ; TjT j such that Ti precedes Tj
if and only if i < j and pj is lexicographically in lower order

than pi (denoted as pi > pj). Note that pi > pj if 1) pj ¼
prefixðpiÞ or 2) for some value of 0 < k � minðjpij; jpjjÞ, the

first k� 1 bits of the two prefixes agree, but the kth bit of
pið¼ 1Þ is larger than the kth bit of pjð¼ 0Þ. Fig. 1 illustrates

the order.

2.2 Background

Given a routing table T , we can construct a next-hop array

(NHA) of size 2W�1, NHA2W

1 ¼
SjT j
i¼1 T

0
i , in which T 0i is

constructed as described in [2]. Fig. 2 shows the NHA

(called expanded table T 0 in [2]) of Fig. 1. Thus, the NHA

contains all possible 2W pairs ðpi; hiÞ and we could solve the

IP lookup problem in one MA. Unfortunately, the size of the
NHA is prohibitively large (4 Gbytes for IPv4). To reduce

the size of the forwarding table, an indirect lookup is

employed [2], [3], [4], [5], [15]. In the following, we briefly

describe the FEC [2] and CNHA/CWA [5] schemes.
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Fig. 1. An example of routing table T for IPv4.



2.2.1 The FEC Techniques

Crescenzi et al. [2] propose an FEC structure that is
comprised of a 2D NHA�r

�c
(called table F ) with �r � �c

entries (r ¼ c ¼ 16, �r � 2r, and �c � 2c) and two segment
tables: row index R and column index C, each with 2r and
2c entries, respectively, such that each entry in RðCÞ is a
pointer to a corresponding row (column) of F . In the FEC
scheme, a 32-bit address X ¼ a:b:c:d is split into Xr

0 ¼ a:b
and Xc

r ¼ c:d and a lookup for X obtains hx ¼ F ½R½Xr
0�,

C½Xc
r�� in three MAs.

To build the FEC structure, [2] implicitly uses an
NHA232

1 ¼
SjT j
i¼1 T

0
i . A break bit, r ¼ 16, is used for grouping

the 32-bit routes into rows 0.0 through 255.255 such that a
route � with row address �r0 ¼ a:b is in row a:b. To reduce
the size of table F , the elements in each row are compressed
into a sequence of RLEs such that a sequence of elements in
the row that have the same next hop are represented by one
RLE. Next, make any set of rows that contain the same RLE
sequence information point to only one copy of information.
Finally, [2] applies a unification step by using the recursive
function ’. It performs on each of the RLE so that all RLE
sequences have the same length �c, which, in turn, are used
for constructing the FEC structure (refer to Fig. 3).

Even though the approach has a worst-case memory
requirement of Oð2W=2 þ jT j2Þ, several simulations using
real routing tables show that the technique requires less
than 2.3 Mbytes of memory. However, a prefix update on
the scheme is difficult. An offline structure reconstruction
has been suggested in [2], [15]. However, the software
implementation of the algorithm in [2] requires hundreds of
milliseconds to build the FEC tables and, therefore, a more
efficient table construction technique is required. In this

paper, we propose a faster algorithm for constructing RLE
sequences and an efficient unification technique for redu-
cing the FEC construction time. Furthermore, utilizing the
updatable address set concept (described in Section 4.1), we
propose a dynamic FEC (DFEC) structure that supports
online prefix updates.

2.2.2 The CNHA/CWA Scheme

The CNHA/CWA technique splits each IP address X ¼
a:b:c:d into a segment a:b and an offset c:d. Huang and Zhao
[5] proposed using an ST S with 216 entries, each of which
stores either a next hop (value < 256 if the length of the
longest prefix in this segment l � 16) or a pointer
(value � 255) to an associated NHA216

1 with 216 entries that
contains the next hop. They [5] took advantage of the
distribution of the prefixes within a segment to reduce the
size of its NHA so that the size depends on the length of the
longest prefix in the segment 16 < l � 32. The NHA of a
segment with an offset length k ¼ l� 16 has 2k entries. In
this approach, each entry in table S contains a 28-bit pointer
or a 28-bit next hop and a 4-bit offset length k.

To further reduce the memory requirement of the
scheme, they [5] converted each NHA into a CWA and a
CNHA. A compression bitmap (CBM) is used for forming a
CWA. The ith sequence of entries in an NHA (for example,
from positions c to d for 0 � c � d � 2k � 1) with the same
next hop hx are represented by a “1” (“0”) in bit position c
(in each bit position � for c < � � d) in its CBM and an hx in
the ith entry of its CNHA. An entry in CWA is comprised of
a 16-bit map and a 16-bit base. A CBM obtains a CWA as
follows: First, partition the CBM into a sequence of
16 bitstreams. Then, convert each ith 16 bitstream in the
CBM into a mapi and basei in the ith entry of its CWA by
copying the stream (

P
j<i �j) to the mapiðbaseiÞ, where �j

represents the total number of bits “1” in the jth stream.
Fig. 4 shows the CNHA/CWA structure of table T in Fig. 1.

Consider an IP lookup for an address X ¼ a:b:c:d that
maps to S½a:b�, which contains an offset length k. We use
q ¼ ðc:dÞk0 to compute s ¼ ðq DIV 16Þ and w ¼ ðq MOD 16Þ
and we calculate position t ¼ bases þ jwj � 1 in CNHA that
stores the next hop. Note that jwj refers to the total number
of bits “1” in bit positions 0 to w of maps. For the CNHA/
CWA structure in Fig. 4 and an address X ¼ 200:27:112:170,
we obtain k ¼ 4 from S½200:27� and, thus, q ¼ 0111 ¼ 7,
s ¼ 0, w ¼ 7, bases ¼ 0, maps ¼ 1000100111000001, jwj ¼ 3,
and t ¼ 0þ 3� 1 ¼ 2, and a next hop CNHA½2� ¼ C is
obtained. Assuming a hardware implementation, each s, w,
and jwj are computable in one step [5]. Thus, the worst-case

112 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 2. The expanded routing table T 0 for Fig. 1.

Fig. 3. FEC tables for Fig. 1.

Fig. 4. Tables S, NHA, CBM, CNHA, and CWA.



IP lookup time is three MAs: one each to access S, CWA,
and CNHA.

Huang and Zhao [5] proposed offline prefix updates by

reconstructing the CNHA and CWA of each of the affected

segments. They [5] used an Oðmlog2mÞ function to construct

the CNHA/CWA directly from the m prefixes in a segment.

Unfortunately, their algorithm does not work in general.

For the prefixes in Fig. 1, Step 4 of their algorithm produces

an incorrect A ¼ fS0
0 ¼ ð0; CÞ; S0

1 ¼ ð4; AÞ; S0
3 ¼ ð8; AÞ; S3

0 ¼
ð9; CÞ; S0

4 ¼ ð15; BÞg for segment S½200:27�. To correct the

problem, we propose including a step before Step 4 of the

algorithm which sorts the elements in A in increasing order

based on their Ski :ma. Elements with identical Ski :ma are

kept in the same order. Including our proposed step, we

obtain the correct

A ¼ fS0
0 ¼ ð0; CÞ; S0

1 ¼ ð4; AÞ; S0
2 ¼ ð7; CÞ; S0

3 ¼ ð8; AÞ;
S3

0 ¼ ð9; CÞ; S0
4 ¼ ð15; BÞg:

In this paper, we propose the use of lexicographically
decreasing ordered prefixes to construct the CNHA and
CWA structures for a given segment in OðmÞ time. In
addition, using the updatable address set concept, we propose
a technique to enable the CNHA/CWA scheme for online
prefix updates.

3 EFFICIENT PREFIX UPDATES USING

LEXICOGRAPHIC ORDERED PREFIXES

3.1 Some Properties of Lexicographic Ordered
Prefixes

Let Aq ¼ pq � ��W�jpq j denote the aggregated IP addresses of a

prefix pq, let sq ¼ pa � �0
W�jpq j ðeq ¼ pq � �

1
W�jpq jÞ be the lowest

(highest) address in Aq and consider a sequence of prefixes

hp0; p1; . . . ; pm�1i sorted in decreasing lexicographic order.

In the following, we describe three properties of the

relationships among the sorted prefixes and their address

ranges.

Property 1. s0 � s1 � . . . � sm�1.

Proof. For i < j, consider two prefixes, pi and pj, in the

sequence and their starting 32-bit aggregated IP ad-

dresses si ¼ pi � �0
W�jpij and sj ¼ pj � �0

W�jpjj, respectively.

By definition, 1) pj ¼ prefixðpiÞ or 2) for some value of

0 < k � minðjpij; jpjjÞ, the first k� 1 bits of the two

prefixes agree, but the kth bit of pið¼ 1Þ is larger than

the kth bit of pjð¼ 0Þ. For case 1, jpjj < jpij and sj contains

at most as many bits “1” as si in their respective most

significant bits and, thus, si � sj. For case 2, si contains

more bits “1” than sj in their respective most significant

bits and, thus, si > sj. tu
Property 2. For i < j, if pj ¼ prefixðpiÞ, then Ai � Aj.

Proof. The relationship Ai � Aj implies that si � sj and
ei � ej. The proof for the case that si � sj follows case 1
of the proof for Property 1. When pj is a prefix of pi,
jpjj < jpij and, thus, ej contains at least as many bits “1”
as ei in their respective most significant bits and, thus,
ej � ei. tu

Property 3. For i < j, ifpj 6¼ prefixðpiÞ, then ðsj < ej < si < eiÞ.
Proof. The proof for the case that si > sj follows case 2 of

the proof for Property 1. When pj is not a prefix of pi, by
definition, ej contains a smaller number of bits “1” than
ei in their respective most significant bits and, thus,
ej < ei. tu

Property 2 implicitly states that the next hop of each
address in Ai is that of prefix pi, whereas Property 3 implies
that, for any two IP addresses � 2 Ai and � 2 Aj, � 6¼ � and
� > �. Fig. 5 illustrates the properties for a sequence of
sorted prefixes hp0; p1; . . . ; p5i, where p1ðp4Þ is a prefix of
p0ðp3Þ and p5 is a prefix of every other prefix in the
sequence.

In this paper, we propose representing all pairs Ti ¼
ðpi; hiÞ of a routing table T by using an ST which contains

216 entries. A segment q, denoted by ST ½q� or STq, contains

the length of the longest prefixes in STq, l ¼ maxðljÞ, and a

l i s t o f t r i p l e s STjq ¼ ðsubprefix spj; prefix length lj �
32; next hop hjÞ for j ¼ 0; 1; . . . ; jSTqj � 1, sorted in decreas-

ing lexicographic order following their subprefixes. Let m ¼
jSTqj represent the number of prefixes in segment STq and

prefix list denote a list of triples STjq . Each Ti, with jpij � 16,

is represented in a segment ST ½q ¼ ðpiÞ16
0 � by a triple

STjq ¼ ððpiÞ
jpij�16
16 ; jpij; hiÞ. On the contrary, each Ti, with

jpij < 16, needs to be expanded into a set ðpi � ��16�jpij; hiÞ.
Then, for each T

0
i ¼ ðp

0
i; hiÞ 2 ðpi � ��16�jpij; hiÞ, we create a

triple ð0:0; jpij; hiÞ and put it in each segment ST ½p0i�. Thus, a

Ti, with jpij < 16, is represented as a triple ð0:0; jpij; hiÞ in

216�jpij segments. As an example, a

Ti ¼ 200:27:240=20=Bð200:27=16=CÞ

is represented in segment ST ½200:27� as a triple (240.0, 20, B)
((0.0, 16, C)) and Ti ¼ 200:24=14=C is (0.0, 14, C) in four
segments:ST ½200:24�,ST ½200:25�,ST ½200:26�, andST ½200:27�.
Each triple (0.0, 14,C) in segments ST ½200:24� and ST ½200:25�
is stored directly in the segments as a pair (14,C). Note that a
triple in the segments requires at most 4 bytes of memory:
2 bytes for the subprefix, 5 bits for the length, and 1 byte for the
next hop. Fig. 6a shows an ST for T in Fig. 1. Since the default
pair ð"; h"Þmay belong to all entries of segmentST , we do not
explicitly store this pair in the table but store only its next
hop h" as a global variable default. Note that any segment
ST ½a:b� ¼ 	 in Fig. 6a indicates that all addresses in range
ða:b:�0

16; a:b:�
1
16Þ are represented by h".

From a triple ðspj; lj; hjÞ in ST ½a:b�, we can

obtain its equivalent pair Tj ¼ ðpj; hjÞ as pj ¼
ða:bÞlj0 ðpj ¼ ða:b � spjÞ

lj
0 Þ when lj � 16ðlj > 16Þ. Let SLq ¼

fðss0; se0; h0Þ; ðss1; se1; h1Þ; . . . ; ðssm�1; sem�1; hm�1Þg be a se-

quence of triples ðssi; sei; hiÞ generated from STq, where

seiðssiÞ denotes the ending (starting) address range of spi for

0 � i � jSTqj � 1. The address ranges 0 � ssi � sei � 216 � 1
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are obtained as sei ¼ 216 � 1 ðsei ¼ spi � �1
32�jpijÞ and ssi ¼ 0

ðssi ¼ spi � �0
32�jpijÞ for jpij � 16ðjpij > 16Þ.

3.2 Efficient RLE Sequence Generation

For each segment ST ½q�, we generate a set of sequences

RLE½q� (also tagged RLEq); thus, for an ST , we obtain a

table RLE . Each RLE½q� contains a sequence of

RLEi
q ¼ hstarti; endi; hii, where i ¼ 0; 1; . . . ; 
� 1 shows

the RLE sequence number within the segment and 0 �
starti � endi � 216 � 1 denotes the starting and ending

addresses, respectively, such that each address within the

range has a next hop hi. Note that we use this table RLE to

construct the FEC and CNHA/CWA structures.
Fig. 7 describes our function that constructs an RLE½q�

from the

SL½q� ¼ fðss0; se0; h0Þ; ðss1; se1; h1Þ; . . . ; ðssm�1; sem�1; hm�1Þg

of a segment ST ½q�. Let RLEi
q:field denote a field 2

fstarti; endi; hig of the RLEi
q, and a pair ðsranget; erangetÞ

refers to the top element in Stack (TOS) that stores the

available address ranges. Step 1 first sets the initial value

for Stack and RLE½q�. Based on the content of ST ½q�, there

are three conditions that can cause an SL½q� to be empty:

1) ST ½q� contains a pair of prefix information ðlj; hjÞ,
2) ST ½q� contains a pointer to a prefix list where all triples

ðspj; lj; hjÞ in the list each have lj � 16, or 3) ST ½q� ¼ 	.

For conditions 1 and 2, the hop is set to hj and hg,

respectively, while, for condition 3, the hop is set to

default. Note that hg is the next hop of a triple with the

longest lj. For these three conditions, Step 2 of function

RLEGen is skipped and only Steps 3 and 4 are executed

to create RLE½q� ¼ h0; 216 � 1; hopið¼ h0:0; 255:255; hopiÞ.
In addition, when ST ½q� contains a pointer to a prefix list,

where all lj > 16, Step 1b sets hop ¼ default. On the other

hand, if there are one or more triples ðspj; lj; hjÞ in ST ½q�, with

lj � 16, Step 1b removes those triples and sets hop ¼ hg,
where hg is the next hop of the longest prefix among the

triples. For these last conditions, the function in Fig. 7 then

executes Steps 2 to 6 to generate more than one RLE.

Step 1 of RLEGen is computable in OðmÞ, whereas Step 2

is repeated m times. Note that the while loop in Steps 2b.iii

and 5 are repeated at most ð2m� 1Þ times in total. With

Step 6, which can be done at most ð2m� 1Þ times, the time

complexity of RLEGen is OðmÞ.

As an example, consider ST ½200:27� in Fig. 6a and

SL200:27 ¼ fð240:0; 255:255; BÞ; ð128:0; 143:255; AÞ;
ð112:0; 127:255; CÞ; ð64:0; 127:255; AÞ;
ð0:0; 255:255; CÞ; ð0:0; 255:255; DÞ; ð0:0; 255:255; CÞg:

We use RLEGen to generate an RLE sequence for

RLE½200:27�. Initially, Stack ¼ ð0; 255:255Þ, RLE½q� ¼ 	,

hop ¼ C (because 0.0/16 is the longest prefix among the

prefixes with lj � 16) and SL200:27 is updated to

fð240:0; 255:255; BÞ; ð128:0; 143:255; AÞ; ð112:0; 127:255; CÞ;
ð64:0; 127:255; AÞg:

For the first SL½q�, (240.0, 255.255, B), Step 2a.i generates

RLE0
200:27 ¼ h240:0; 255:255; Bi and updates
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Fig. 6. Tables (a) ST and (b) RLE for T in Fig. 1.

Fig. 7. Function RLEGen.



Stack ¼ fð0; 239:255Þg:

For the next SL½q�, (128.0,143.255, A), Step 2a.i generates
RLE1

200:27 ¼ h128:0; 143:255; Ai and Step 2a.ii removes the
top element and pushes two new address ranges into
Stackð¼ fð0; 127:255Þð144:0; 239:255ÞgÞ, where the last pair
in Stack (that is, (144.0, 239.255)) is the available address
range between RLE0

200:27 and RLE1
200:27. RLE2

200:27 ¼
h112:0; 127:255; Ai is obtained from (112.0, 127.255, C) by
popping the range (0, 127.255) from Stack and pushing a new
range (0, 111.255) into the Stack. For the last SL½q�,
(64.0, 127.255,A), Steps 2b.i and 2b.ii are executed. However,
since se3ð¼ 127:255Þ is less than srangetð¼ 144:0Þ, the RLE
generation is continued to Step 3. Executing Steps 3 to 6, we
obtain

RLE½200:27� ¼ fh0:0; 63:255; Cih64:0; 111:255; Ai
h112:0; 127:255; Cih128:0; 143:255; Ai
h144:0; 239:255; Cih240:0; 255:255; Big:

Fig. 6b shows the resulting table RLE of ST in Fig. 6a.

3.3 Improved Technique for FEC Table
Construction

This section shows how we can convert table RLE into the
FEC structure. Note that table RLE is equivalent to row R of
the FEC structure and, hence, its conversion is straightfor-
ward. In addition, the row compression steps for FEC can
be directly processed by sequentially deleting any duplicate
RLEq and adjusting its corresponding pointer. Let �r be the
number of nonduplicated RLE sequences of table RLE. As
an example, each pointer in RLE0:1 through RLE200:23,
RLE200:26 and RLE200:28 through RLE255:255 ðRLE200:25Þ in
Fig. 6b is adjusted to point to the element pointed by
RLE0:0ðRLE200:24Þ to obtain three RLEs: RLE0:0, RLE200:24,
and RLE200:27.

Crescenzi et al. [2] used a function ’ so that each of the
nonduplicate RLE sequences contains the same number of
RLEs. In this unification step, an RLEi

q ¼ hstarti; endi; hii
may be expanded into

hstarti; �1; hiih�1 þ 1; �2; hii . . . h�v�1 þ 1; �v; hii;

where endi ¼ �v and �j þ 1 ¼ �jþ1 for 1 � j � v� 1. The
function ’ in [2] performs a row-based splitting. Our
experiments show that, typically, table F has smaller
columns than rows and, therefore, our unification method

RLE-sequence-expansion (RSE), which is shown in

Fig. 8 and does a columnwise adjustment, is expected to be

more efficient.
Fig. 9 illustrates function RSE to uncompress the RLEs in

Fig. 6b. Each of Steps 1 through 4 is computable in Oð�rÞ
and Step 5 is repeated �c times and, therefore, function RSE

has a time complexity of Oð�r�cÞ. Note that Step 2 can be

done while doing Step 1 and Steps 3 and 4.
Using functions RLEGen and RSE, we propose the FEC

construction algorithm in Fig. 10, which constructs tables F ,

R, and C from table ST . For a routing table T , the worst-

case complexity of Step 1 is 216 �OðmÞ, which can be

estimated as OðjT jÞ, where m � jT j denotes the total

number of prefixes in a segment. Step 2 can be completed

in Oð216 �mÞ ¼ OðjT jÞ, Step 3 can be done in Oð�r�cÞ, and

Step 4 can be implemented as part of Step 3. Therefore, the

complexity of the FEC_construction is OðjT j þ �r�cÞ.
Note that the FEC construction approach in [2] requires

OðjT jlog2jT j þ �r�cÞ asymptotic time, considering an

OðjT jlog2jT jÞ sorting algorithm. Our approach is more

efficient than that in [2] because 1) it does not require the

prefixes to be sorted for generating RLE sequence and 2) it

uses column-based unification, in contrast to the row-based

unification in [2].

3.4 Improved Technique for the CNHA/CWA
Construction

The CNHA/CWA structure [5] can be constructed from

table RLE. We first construct table S from ST . Let 0 �
l � 32 be the length of the longest prefix in STq. For

l � 16ðl > 16Þ, S½q� ¼ h0ðS½q�:offset length ¼ l� 16Þ. For

l > 16, we then use the function in Fig. 11 to construct
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Fig. 8. Function RSE. Fig. 9. Unification of RLE sequences in Fig. 6b.

Fig. 10. Algorithm FEC_construction.



a CNHAq and CWAq from RLE½q� ¼ hstart0; end0; h0i
hstart1; end1; h1i . . . hstart
�1; end
�1; h
�1i.

Note that 0 � starti � endi � 216 � 1 and, thus, Step 4
of the function adjusts the range to 0 � ai � 2l�16 � 1.
Then, Steps 5, 6, and 7 convert the adjusted RLE into
CNHA and CWA. To illustrate the function, consider
RLE½200:27� in Fig. 6b, with jRLEqj ¼ 6 and l ¼ 20. For
i ¼ 0, CNHA½0� ¼ C, start0 ¼ 0, a0 ¼ 0, s ¼ 0, w ¼ 0,
CWA½0�:map ¼ 1000000000000000, and CWA½1�:base ¼ 1.
For i ¼ 1, CNHA½1� ¼ A, start1 ¼ 16; 384, a1 ¼ 4, s ¼ 0,
w ¼ 4, CWA½0�:map ¼ 1000100000000000, and

CWA½1�:base ¼ 2:

Repeating the process, we obtain the CNHA and CWA, as
shown in Fig. 4. Note that each jRLEqj � 2m� 1 and,
therefore, the time complexity of the function is OðmÞ,
which is more efficient than the Oðmlog2mÞ approach in [5].

Using functions RLEGen and CNHA/CWA_from_RLE, in
Fig. 12, we propose a CNHA/CWA construction algorithm
that builds tables S, CNHA, and CWA from table ST. Since
the for loop is repeated at most 216 times, the complexity of
our technique is OðjT jÞ.

4 USING UPDATABLE ADDRESS SET FOR ONLINE

PREFIX UPDATES

4.1 Updatable Address Set for an Inserted/Deleted
Prefix

We consider two prefix update operations: insertion and
deletion. A next-hop alteration can be done by a prefix
insertion. Consider the insertion/deletion of a pair Ti ¼
ðpi; hiÞ to/from a table T . Since prefix pi represents
aggregated addresses p�i ¼ pi � ��W�jpij, it is obvious that its
insertion/deletion may affect only the next hop of the
addresses in p�i . However, as illustrated in Fig. 13, the next
hop of some of the addresses in p�i should be kept unchanged

because it may represent that of exceptionðpiÞ, that is,
pj; pjþ1; . . . ; pjþg, where pi ¼ prefixðpjþ�Þ for � ¼ 0; 1; . . . ; g.
For pi ¼ prefixðpjÞ, let exceptedðpi; pjÞ be the addresses in p�j
that are part of the addresses in p�i . In this paper, we call a
set of addresses whose next hop should be updated when a
Ti is inserted or deleted from the routing table T an
updateable address set, denoted as updateableðpiÞ. The follow-
ing property shows how we can generate the updateable
address set:

Property 4. updateableðpiÞ ¼ p�i � [j exceptedðpi; pjÞ for all
pj 2 exceptionðpiÞ, where “�” is a set difference operator.

As an example, prefix 200.27.112/20 in Fig. 1 is
the only prefix exception of 200.27.64/18 and, there-
fore, updateableð200:27:64=18Þ are the addresses from
200.27.64.0 to 200.27.111.255. Following the property and
to support online prefix update, we use table ST
(described in Section 3.1) so that the prefix exceptions of
the inserted/deleted prefix can be obtained. Once the set
updateableðpiÞ is generated, the next hop of each address in
the set should be replaced with a new next hop. For an
inserted pair ðpi; hiÞ, hi should replace that of each address in
the updateable address set. The following property shows the
new next hop for case prefix deletion.

Property 5. Consider two pairs, ðpi; hiÞ and ðpk; hkÞ, where
prefix pk ¼ LMP ðpiÞ and p�i � p�k. The deletion of ðpi; hiÞ
from the routing table T makes hk the next hop of each address
in set p�i .

As illustrated in Fig. 13, a deletion of ðpi; hiÞ results in
replacing the next hop of each address in updateableðpiÞ
(the boldest lines) with that of a prefix of pk ¼ LMP ðpiÞ,
that is, hk. As an example, if Ti ¼ 200:27:112=20=C is
deleted from table T in Fig. 1, the next hop of each of the
addresses from 200.27.112.0 to 200.27.127.255 should be
updated with A (that is, the next hop of prefix
200:27:64=18 ¼ LMP ð200:27:112=20Þ).

4.2 Generating ExceptionðpiÞ and LMPðpiÞ
Consider an inserted/deleted pair Ti ¼ ðpi; hiÞ and a
table ST. Let PEqðpiÞ ¼ exceptionðpiÞ in ST ½q� and, without
loss of generality, assume that each of the prefixes pj in
PEqðpiÞ is denoted by its subprefix spj sorted in decreasing
lexicographic order. The function in Fig. 14 generates the set
PEðpiÞ ¼ fPEqðpiÞg.

For case deletion, the search process continues to find the
LMP ðpiÞ, as required by Property 5. Because elements in
each segment are sorted in decreasing lexicographic order,
an LMP ðpiÞ is obtained from the first prefixðpiÞ down the
list. Note that this step can be a part of function
gen_exception. During the search process of finding
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Fig. 11. Function CNHA/CWA_from_RLE.

Fig. 12. The CNHA/CWA_construction algorithm.

Fig. 13. The updateable address set.



the exceptions, pi can also be inserted (deleted) into (from)
its proper location in ST ½q�. It is obvious that, since

jSTqj ¼ m, the time complexity of this function is bounded
above by Oðm � 216�jpijÞ, that is, when jpij < 16. Note that
216�jpij � 256 and, therefore, the time complexity of the
function is OðmÞ.

4.3 The Updateable Address Set Generation

Consider a set of prefix exceptions PEq ¼ ðsp0; sp1; . . . ; sp��1Þ
from segment ST ½q� of a prefix pi and let ELq ¼
ðse0; ss0; se1; ss1; . . . ; se��1; ss��1Þ be a sequence of address
range for the subprefixes in PEq. Utilizing Properties 2
and 4 and considering ELq, we propose function
gen_updatable, as shown in Fig. 15, to generate an
updatable address set Uq ¼ fðstart0; end0Þ; ðstart1; end1Þ; . . .g
of a subprefix spi. In the following, let start (end) be the
lowest (highest) address range of spi of pi in segment q,
which can be computed as start ¼ 0 and end ¼ 216 � 1 if

jpij � 16. In addition, start ¼ ðpiÞjpij�16
16 � �0

W�jpij and end ¼
ðpiÞjpij�16

16 � �1
W�jpij if jpij > 16.

Fig. 5 illustrates the updateable address set (bold lines) for a
sequence of sorted prefixes < p0; p1; . . . ; p5 > , where p1ðp4Þ
is a prefix of p0ðp3Þ and pi ¼ p5 is a prefix of every other
prefix in the sequence. As another illustration, consider the
sequence of prefixes in Fig. 6a and an inserted pair ðpi; hiÞ ¼
200:27:224=19=B that maps to segment ST ½200:27� with
address range 224.0 to 255.255. Function gen_exception

finds only one subprefix 240.0/20/B in segment ST ½200:27�,
with address range 240.0 to 255.255 and function gen_

updatable and then obtains U200:27 ¼ fð57344; 61439Þg.
Similarly, for a deleted ðpi; hiÞ ¼ 200:27:64=18=A, we obtain
a subprefix 112:0=20=B, which is used for generating
U200:27 ¼ fð16384; 28671Þg and LMP ðpiÞ ¼ 0:0=16 with next
hop C. Because � in the function is, at most, the total
number of prefixes in segment ST ½q�ð¼ mÞ, the time

complexity of function gen_updateable is OðmÞ.

4.4 DFEC Scheme

In an FEC structure with �r � 2rð�c � 2cÞ, a row

(column) in F may be used by more than one row

(column) pointer and, hence, F ½�; �� may represent the

next hop of more than one IP address. Let

�rð�Þð�cð�ÞÞ represent a set of row (column) addresses

fXrjR½Xr� ¼ �;Xr � 2rgðfXcjR½Xc� ¼ �;Xc � 2cgÞ. In other

words, for Xr 2 �rð�Þ, and Xc 2 �cð�Þ, an IP address X ¼
Xr �Xc has its next hop represented by F ½�; ��. Note that

j�rð�Þjðj�cð�ÞjÞ gives the total number of pointers to row �

(column �) and F ½�; �� represents the next hop of j�rð�Þj �
j�cð�Þj number of IP addresses. Let us call j�rð�Þjðj�cð�ÞjÞ
the degree of row � (column �). The following property

gives a set of IP addresses whose next hop is represented by

F ½�; ��:
Property 6. F ½�; �� represents the next-hop information of a set

of W -bit addresses �rð�Þ:�cð�Þ.

As an example, F ½1; 0�ð¼ CÞ in Fig. 3 represents the next

hop of 16384�2 addresses: 200.24.0.0 to 200.24.63.255 and

200.25.0.0 to 200.25.63.255. Note that the column addresses

in each �cð�Þ are consecutive 16-bit integers. This observa-

tion is stated in the following property:

Property 7. For any column � in table F , the 16-bit addresses in

�cð�Þ are one or more consecutive integers in the range

f�; f� þ 1; . . . ; f� þ j�cð�Þj � 1 for f� � 0.

As an example, the column pointers to F ½�; 0� in Fig. 3 are

16,384 consecutive addresses (0 to 16,383). In DFEC, an

array row_degree of size ��r2 bytes is used for storing j�rð�Þj
of each row �. In addition, an array column_degree is used

for storing pairs of ðj�cð�Þj; f�Þ of each column �, where f�
denotes the starting column address in table C, whose

content is a pointer to column �.
Given an inserted/deleted pair ðpi; hiÞ, our approach

runs in three phases. In the partial expansion phase, our

method selectively expands the rows and/or columns of

table F so that the next hop of each address in the updateable

address set can be modified. In the update phase, we replace

the next hop of each address in updateableðpiÞ with a new

next-hop information. Finally, in the compression phase, the

updated tables F , R, and C are recompressed. In Fig. 16, we

show our proposed online prefix update technique for
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Fig. 14. Function gen_exception.

Fig. 15. Function gen_updatable.



DFEC. For an inserted (deleted) pair Ti ¼ ðpi; hiÞ, let
hop ¼ hiðhop ¼ hj; pj ¼ LMP ðpiÞÞ.

In Step 4, if the row degree of each of the updateable
rows is more than one, it creates a copy of the row at a
new row �r þ 1, increments �r by one, and adjusts the
corresponding addresses in table R to point to the new
row. Step 4 then updates the contents of tables F , R,
and C by using function update_FEC_table in Fig. 17,
where Uq ¼ fðstart0; end0Þ; ðstart1; end1Þ; . . . ; ðstartl; endlÞg,
hop i s t h e n e w n e x t - h o p i n f o r m a t i o n , a n d
�cð�Þ ¼ ff�; f� þ 1; . . . ; f� þ j�cð�Þj � 1g.

Function update_FEC_table is used for each
nonempty Uq. Note that each column address range from
starti to endi may span 1) all column addresses within
column �, 2) a part of the column addresses in �, or
3) column addresses of more than one column starting
from �. Case 3 occurs when the consecutive columns in a
row contain the same next hop. Fig. 18 illustrates the
three cases. For case 1, we simply update the next-hop
information in F ½�; ��. Let us denote f� as the starting
address of the address range �cð�Þ. In case 2, if starti
ðendiÞ is greater (less) than f� ðf� þ j�cð�Þj � 1Þ, we need
to create a column for the address range f� to starti �
1ððendi þ 1Þ to ðf� þ j�cð�Þj � 1Þ) before updating the

content of F ½�; �� with a new next hop. For case 3, assume
that the address range spans e columns (as illustrated in
Fig. 18). Similarly to the step in case 2, if startiðendiÞ is
greater (less) than f�ðf�þe þ j�cð� þ eÞj � 1Þ, we need to
create a column for the address range f� to starti � 1

(endi þ 1 to ðf�þe þ j�cð� þ eÞj � 1Þ). Also update the con-
tents of e columns (of table F in row � that are pointed to by
the update address range) with a new next hop. Thus, at
most two columns are created in cases 2 and 3.

Our simulation shows that a typical prefix insertion or
deletion requires more row expansions than column
expansions, with some of the expanded rows and/or
columns being duplicates. In our implementation, the
F table is constructed from an array of rows and, therefore,
copying a row is faster than duplicating a column. After a
row is created and updated, we check if the row is a
duplicate of any of the other existing rows. To speed this
step up, we keep a hash value for each row in an array
row_hash so that a possible duplication can be detected in
Oð1Þ if the hash value of the new row is the same as that for
any of the existing rows. The contents of the two rows are
compared (in Oð�c)) when the rows have the same hash
value. To merge two identical rows, all pointers to the
deleted row are updated to point to the surviving row. This
step can be done in Oð216�jpij � 256Þ ¼ Oð1Þ. The column
compression is done similarly, with the additional task of
recomputing the hash values for the rows, which requires
Oð�rÞ steps. Step 4 of the function in Fig. 17 creates at
most two column copies, each requiring Oð�rÞ. Note that
the for loops in Steps 4 and 5 are each executed in a total
of 232�jpij < 216 times (bounded above by the size of
col_index C) and the while loop in Step 7 repeats a total of
�c times. Because all of the steps are repeated jUqj ¼ m
times, the complexity of update_FEC_table is
Oðm��r þ �c þ 232�jpijÞ ¼ Oðm��rÞ. We compute the com-
plexity of the prefix_update_DFEC algorithm in Fig. 16
as follows: Steps 1 and 3 each need OðmÞ, while Steps 4
and 5 require Oðm��rÞ and Oð��r�cÞ, respectively. Because
Steps 3 and 4 are repeated 216�jpij � 256 times, the
computational complexity of our online prefix update
for the FEC scheme is Oðm���r216�jpij þ ��r�cÞ ¼ Oðm��rÞ,
assuming that �c < m�216�jpij.

To illustrate our DFEC, consider table T in Fig. 1
with its FEC in Fig. 3 and an insertion of
ðpi ¼ 110010000001101110�; AÞ. We generate

p�i ¼ 110010000001101110 � ��14;

exceptionðpiÞ ¼ PEi ¼ f11001000000110111000�g;

a n d exceptedðpi; PEiÞ ¼ f200:27:128:0; . . . ; 200:27:143:255g
and, hence,
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Fig. 16. Algorithm prefix_update_DFEC.

Fig. 17. Function update_FEC_table.

Fig. 18. Three cases for address range starti; . . . ; endi.



updateableðpiÞ ¼ f200:27:144:0; . . . ; 200:27:191:255g:

Note that the updateable addresses refer to row � ¼ 2
(pointed to by index q ¼ 200:27) and column � ¼ 4
(pointed to by index 49,152 . . . 61,439). Following case 2,
the column is expanded, and the content of F ½2; 4� is
replaced by A, as shown in Fig. 19a. The updated FEC
table, as shown in Fig. 19b, is obtained after compressing
columns 3 and 4 in Fig. 19a. Similarly, deleting a pair
ðpi ¼ 110010000001101110�; AÞ from the FEC in Fig. 19b, we
find C as the next hop of LMP ðpiÞ ¼ 200:27=16, and
updateableðpiÞ ¼ f200:27:144:0; . . . ; 200:27:191:255g. P a r -
tially expanding the FEC in Fig 19b, the FEC in Fig. 19a is
obtained. Replacing F ½2; 4� with C and compressing the
result, we obtain the FEC in Fig. 3.

4.5 Online Update Technique for the CNHA/CWA
Scheme

For a pair ðpi; hiÞ that is deleted (inserted) from (into) table T ,
when jpij � 16, there is only one affected segment,
S½q ¼ pið Þ16

0 �. For jpij < 16, on the other hand, there is a set
of 216�jpij affected segments, A ¼ pi � ��16�jpij. An affected
segment may contain the next-hop information (case 1) or a
pointer to its CNHA/CWA structure (case 2). In Fig. 20, we
propose an algorithm for performing online update on
CNHA/CWA of an affected segment S½q�. Note that PEq ¼
exceptionðpiÞ in ST ½q� and hop ¼ hkðhop ¼ hiÞ for a deleted
(inserted) pair ðpi; hiÞ, where pk ¼ LMP ðpiÞ.

For case 1, our function update_CNHA_CWA_1 (shown
in Fig. 21) utilizes the updateable address set concept to
modify the CNHA/CWA structure when a pair ðpi; hiÞ is
inserted or deleted. When jpij � 16 and pi is not a prefix of
any prefix in the segment, we only need to update the next-
hop information for the segment with the new next hop.

The function first obtains Uq (Step 2), which, in turn, is used
for modifying the affected RLE sequence. Then, in Step 6, if
the updated RLE sequence contains only one field
hstarti; endi; hii, hi is directly stored in the segment.
Otherwise, Step 7 generates the updated CNHA/CWA
from the modified RLE sequence.

Steps 1 and 7 of the function in Fig. 21 each need OðmÞ
and the for loop in Step 4 is visited jUqj ¼ OðmÞ times.
Therefore, the time complexity of the function is OðmÞ.

For case 2 in Fig. 20, our function update_CNHA_CWA_2

(shown in Fig. 22) performs the necessary partial CWA and
CNHA expansions and updates each nonempty Uq. For an
affected ST ½q�, Step 1 of the function generates Uq. Let l be
the length of the longest prefix in ST ½q�. Step 2 considers
two different cases. For an inserted prefix pi, when jpij > l,
we need to expand the size of the existing CWA. Note that
jCWAj ¼ d2l�16=16e and, thus, when jpij > l > 16, the
updated CWA contains d2jpij�16=16e maps and bases. Let b ¼
jpij � l be the resized factor. A “1” in bit position d of CWAi

maps to a “1” in bit position ðði�16þ dÞ�2bÞ MOD 16 in its
expanded newCWAs, where s ¼ ðði�16þ dÞ�2bÞ DIV 16.
This resizing step includes recalculating the bases of the
new CWA. As an example, consider the CWA of a
segment S½200:27� in Fig. 4, with l ¼ 20, and an inserted
pi ¼ 220:27:192=21=B. Because jpij > l, we obtain b ¼
21� 20 ¼ 1 and, hence, the CWA is expanded from size 1
into d221�16=16e ¼ 2. A “1” in bit position 0 of CWA0

maps to a “1” in position ðð0�16þ 0Þ�21Þ MOD 16 ¼ 0 of
newCWA0 because s ¼ ðð0�16þ 0Þ�21Þ DIV 16 ¼ 0. On the
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Fig. 19. Inserting 200.27.128/18/A into the FEC in Fig. 3. (a) Expand-

and-update step. (b) Compressed step.

Fig. 20. Algorithm prefix_update_CNHA/CWA.

Fig. 21. Function update_CNHA_CWA_1.



other hand, a “1” in bit position 9 of CWA0 maps to a

“1” in position ðð0�16þ 9Þ�21Þ MOD 16 ¼ 2 of newCWA1

because s ¼ ðð0�16þ 9Þ�21Þ DIV 16 ¼ 1. Using this map-

ping formula, the CWA in Fig. 4 is converted into

equivalent CWA0 : map ¼ 1000000010000010, base ¼ 0,

and CWA1 : map ¼ 1010000000000010, base ¼ 3.

For case deletion, we remove pi from STa and recalculate
the segment’s l. If the new l < jpij, then the CWA needs to be
converted into a newCWA of size d2l�16=16e and a negative
b ¼ l� jpij is used for shrinking the CWA. Note that the
CWA is resized in Step 5 after we perform a modification to
the CNHA and CWA in Steps 3 and 4. The function in Fig. 23
resizes a CWA. Let b ¼ jpij � lðb ¼ l� jpijÞ for case insertion
(deletion). The complexity of function resize_CWA de-
pends on the number of maps/bases in CWA ð¼ d2l�16=16e �
4096Þ and the number of bits in Step 2 ð¼ OðmÞÞ and, so, its
time complexity is OðmÞ.

Step 3 of update_CNHA_CWA_2 performs the partial
CNHA expansions, content updates, and recompression
and modifies the affected bits in its CWA. Note that the
IP addresses with next hop Y in a CNHA are denoted by
a sequence of bits in its CBM starting from a “1” in bit
position c1 and ending at a “0” at bit position c2. As an
example, the CNHA½1� ¼ A in Fig. 4 is the next hop of
addresses represented by bits 100 in positions c1 ¼ 4 to
c2 ¼ 6. For each pair ðstarti; endiÞ of Uq, we can obtain
the starting (ending) bit b1 ¼ starti DIV 232�lðb2 ¼
endi DIV 232�lÞ in the CBM that is affected by the update.
As illustrated in Fig. 24, we consider four possible cases for
expanding the CNHA. In case 1, because b1 ¼ c1, and
b2 ¼ c2, we need not expand the CNHA: The next hop Y can
be directly updated. For cases 2 and 3, we need the two next
hops for the address ranges represented by the bit span
between c1 and c2 because the nonupdateable addresses
require Y as their next hop. Therefore, for case 2 (case 3), a
new slot in CNHA (empty slot in Fig. 24) is created before
(after) Y to store the next hop of the updateable addresses.
Finally, in case 4, the first (second) Y is used for
representing the next hop of the nonupdateable addresses.
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Fig. 22. Function update_CNHA_CWA_2.

Fig. 23. Function resize_CWA.

Fig. 24. Four cases of partial CNHA expansion.



For cases 2 and 3, if the new next hop is the same as that

of its neighbor’s, the two elements need to be merged. In

other words, for this scenario, cases 2 and 3 do not require

CNHA expansion. Therefore, for these two cases, we check

for such possible recompression to avoid unnecessary

complexity of the CNHA partial expansion. However, in

all cases, the contents of CWA (maps and bases) need to be

modified to reflect the updated next-hop representation in

the CNHA. Step 3g in Fig. 22 updates the contents of the

CWA bases. Note that the bit position b1ðb2Þ in a CBM is

equivalent to bit position w1 ¼ b1 MOD 16 in map t1 ¼ b1

DIV 16 (w2 ¼ b2 MOD 16 in map t2 ¼ b2 DIV 16) in its

corresponding CWA. Further, bit position w3 ¼ b2 þ 1

MOD 16 in map t3 ¼ b2 þ 1 DIV 16 represents a bit “1”

for the next next hop in the CNHA (for example, Z in

Fig. 24).
Steps 1, 2, and 5 of update_CNHA_CWA_2 each are

computable in OðmÞ and the for loop in Step 3 is

repeated jUqj � m times. The for loops in Steps 3g and

3h, in total, are repeated jCWAj ¼ d2l�16=16e � 4; 096

times and, thus, the complexity of the function is

Oðmþmþmþ jCWAj þmÞ ¼ OðmÞ. In Fig. 20, Step 2 is

executed jPEj ¼ d216�jpije � 256 times and, therefore, the

computational complexity of our online prefix update for

CNHA/CWA is Oðm�jPEjÞ ¼ OðmÞ.
To illustrate our online update, consider the

CNHA/CWA structure in Fig. 4 and a pair

ðpi ¼ 110010000001101110�; AÞ. The previous example for

DFEC obtained U200:27 ¼ ðf36864; 49151gÞ. With l ¼ 20, ws ¼
ð36864 DIV 232�20Þ MOD 16 ¼ 9, ts ¼ 0, f ¼ 0þ 5� 1 ¼ 4,

we ¼ ðð49151þ 1Þ DIV 232�20Þ MOD 16 ¼ 12, and te ¼ 0.

Because CNHA½4� ¼ C 6¼ hopð¼ AÞ and, in Step 3c, bit

position ws ¼ 9ðwe ¼ 12Þ in map0 is “1” (“0”), the prefix

insertion falls into case 2. Since CNHA½4� 1� contains A,

the update affects only CWA and, thus, bit position ws ¼
9ðwe ¼ 12Þ in map0 is set to “0” (“1”). Fig. 25 shows the

result of updating the CNHA/CWA structure of Fig. 4.

5 EXPERIMENTAL RESULTS

5.1 Environment and Databases for Test Data

We have implemented our algorithms in ANSI C and run
them on a 3.2 GHz Pentium IV computer with 1 Mbyte
cache and 1 Gbyte RAM. To evaluate their performances,
we used seven databases: AADS (2001), Mae-West (2001),
Mae-East (1997), Paix (2001), Paix (2000), PB (2001), and
PB (2000). Table 1 shows the total number of prefixes
(#prefix), the prefix length distribution, the total number of
ports in each database, and the size of ST for each routing
table T . Although each prefix pi, with jpij < 16, is
represented in 216�jpij segments of ST , most of these prefixes
are stored directly in the segment and, therefore,
#spj < #prefix, where #spj indicates the number of
subprefixes in table ST . A 1-byte variable is used for hi in
each triple ðspi; li; hiÞ of ST and, therefore, our system
supports databases with up to 255 ports.

5.2 Experiments for the FEC Scheme

5.2.1 FEC Table Construction Time

Table 2 shows the size of table F (�r and �c) for each
database. The memory usage of the FEC table was
calculated by taking the sum of the memory requirements
for arrays Rð¼ 216 � 2Þ and Cð¼ 216 � 2Þ and table F , which
is calculated as �r � �c � 1 byte. Because each database
contains less than 11 percent of prefixes with a length of at
most 16 bits (Table 1), fixing r ¼ c ¼ 16 minimizes the size
of the FEC table. The IP lookup time for each forwarding
table is obtained by taking the average of lookup time of
1,000,000 randomly generated IP addresses. We noticed that
the average lookup time on each database is slightly
different, although the FEC scheme requires exactly three
MAs per lookup, We suspect that these differences are
caused by the different numbers of cache misses that
occurred among the tables. Table 2 also shows the FEC table
construction time by using the technique in [2] ðt½2�Þ and our
technique ðttotalÞ. For t½2�, we ran the source code in [2]. Our
algorithm constructed exactly the same tables as those
obtained by the technique in [2], but 2.56 to 7.74 times faster
(column 
). Column tRLE ðtRSEÞ shows the runtime of our
RLEGen (RSE), where ttotal ¼ tRLE þ tRSE .

5.2.2 Online Prefix Update Time on DFEC

To measure the performance of our DFEC scheme, we
generated a random permutation of the prefixes for each

SOH ET AL.: EFFICIENT PREFIX UPDATES FOR IP ROUTER USING LEXICOGRAPHIC ORDERING AND UPDATEABLE ADDRESS SET 121

Fig. 25. Updated CNHA/CWA of Fig. 4.

TABLE 1
Databases for Test Data



database. For prefix insertion (deletion), we built the tables
F , R, and C from the first 70 percent (all) entries of each
database, inserted (deleted) the remaining (the last)
30 percent by using our online update technique, and
measured the average insertion (deletion) time.

Table 3 shows the average insertion (deletion) time ti ðtdÞ
for inserting (deleting) 30 percent of the prefixes in each
database. Note that #prefix shows the number of inserted or
deleted prefixes. For each insertion or deletion, tables F , R,
and C are recompressed and, hence, the resulting table F is
expected to be the same as that obtained by the offline
structure reconstruction. To verify the correctness of our
online insertion (deletion) technique, we compared the
resulting table from inserting (deleting) the 30 percent of
prefixes of each database with that constructed by the
method in [2] by using all (the first 70 percent) prefixes. As
shown in Table 3, the average prefix update time is at most
10.1 �s, which shows the efficiency of our online prefix
update technique while maintaining the scheme’s fast
lookup time of three MAs.

The table also presents the total number of row and
column expansions for both insertion and deletion cases. As
shown, each insertion or deletion requires, on average, less
than one row and one column expansion. Notice that the
number of column expansion is far less than that of row
expansion. We observed that the execution time for each
column expansion/recompression is significantly more
than that for row. This fact is due to the use of row-based
array to implement table F and, thus, each column
expansion/recompression requires Oð�rÞ MA.

As described in Section 4.4, DFEC needs additional
memory space for its arrays row_hash, row_degree, and

column_degree. Comparing the memory requirements of
FEC and DFEC (Table 2), we observed that the latter
requirement is at most 600 Kbytes larger, with the benefit of
enabling FEC for online prefix update.

5.3 Experiment for the CNHA/CWA Scheme

5.3.1 The CNHA/CWA Construction Time

Table 4 compares the performances of our proposed
CNHA/CWA structure construction technique and the
method in [5]. For this simulation, we have corrected the
inconsistencies of the technique in [5] by including an
additional sorting step, as described in Section 2.2.2. Our
technique runs 4.57 to 6 times faster than that in [5] (column

 ¼ t½5�=tours). The last column of the table shows our
software simulations for IP lookup time on the CNHA/
CWA structure for each database. The time is obtained by
taking the average lookup time of 1,000,000 randomly
generated IP addresses for each forwarding table. We
needed two table references to compute jwj for each IP
lookup and, hence, each lookup in our experiment required
at most five MAs. Comparing Tables 2 and 4 in terms of IP
lookup, the software implementation of the FEC scheme
outperforms that of CHNA/CWA because the former
(latter) requires exactly three (at most five) MAs per IP
lookup. However, the FEC scheme requires significantly
larger memory than that needed by the CHNA/CWA
scheme. Note that the memory requirements for the
CHNA/CWA scheme depend on the length of the longest
prefix in a segment (the last column in Table 1) and the total
number of CNHA/CWA in the structure (#CNHA in
Table 4).
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TABLE 2
The FEC Table Size, Memory Requirement, Construction Time, and Lookup Time

TABLE 3
Average Insertion and Deletion Time on DFEC

TABLE 4
The CNHA/CWA Construction Time



5.3.2 Online Prefix Update Time for the CNHA/CWA

Scheme

Table 5 shows the comparison between the offline and online
updates on CNHA/CWA. For insertion (deletion), we
constructed CNHA/CWA from the first 70 percent (all)
prefixes of each database, inserted (deleted) the remaining
(last) 30 percent, and measured the average insertion
(deletion) time. To verify the correctness of our insertion
(deletion) technique, we compared the resulting table from
inserting (deleting) the 30 percent of prefixes of each database
with that constructed by using 100 (70) percent of prefixes. For
offline update, we used both our implementation of the
algorithm in [5] and our approach to reconstructing the
affected segments (see columns t½5� and tours).

As shown in the table, our offline technique runs two to
five times faster than the method in [5]. The table also
shows that our online approach is faster than either offline
method. Comparing tonline and t½5�ðtoursÞ, the online approach
is 9.50 to 20.54 (2.62 to 6.77) times faster than the offline
technique in [5] (our offline method). Note that #segments
(#CNHA) in the table shows the total number of updates
that are done on the affected segments (CNHA/CWA).

5.4 Comparison with the Existing Techniques

This section compares the lookup time, memory require-
ment, and update speed of DFEC and CNHA/CWA with
those of BART [23], three recently proposed Oðlog2jT jÞ
structures (PST [9], CRBT [18], ACRBT [19]), and multibit
tries [17], [21] schemes. We use both worst-case and
average-case lookup and update times to show the
efficiency of the IP lookup schemes. We consider both
lookup time measures, whereas, for update time, we
consider only the average case because such data for the
methods in [9], [17], [18], [19] are readily available.

The compression scheme in [23] optimizes the memory
requirement of the BART data structure and, at the same time,
allows the structure to be incrementally updated. It has been
reported in [23] that a Paix with 72,825 prefixes fits in
555 Kbytes on the six-segment BART, requiring only
7.9 bytes/prefix. A c-segment BART requires cþ 2 MAs per
lookup. However, as presented in [23, Fig. 14], for the same
database, a three-segment BART (partition 16 8 8) requires
approximately 31.64 bytes/prefix. Both DFEC and CNHA/
CWA are faster than the three-segment BART, which needs
3þ 2 ¼ 5 MAs, and require less memory (8.1 and 30.19 by-

tes/prefix, respectively, for Paix with 85,987 prefixes).
Thus, we may conclude that DFEC and CNHA/CWA are
better than BART [23] in lookup time and memory
requirements. However, the worst-case incremental update
in BART [23] is faster than that in either DFEC or CNHA/
CWA.

From [9], the average lookup, insertion, and deletion times
of PST for database 5 (7) in Table 1 (henceforth, we refer to the
database as Paix (PB)) are 1.97, 3.07, and 2.91 (1.70, 2.80, and
2.55) �s, respectively, with 4,702 (1,930) Kbytes of memory.
Note that, in [9], PST is shown to be superior to ACRBT [19]
and, in [19], ACRBT is shown to be better than CRBT [18] in
terms of the above performance measures. In comparison to
these, our DFEC (CNHA/CWA) requires 0.047, 7.02, and
9.81 (0.066, 3.95, and 4.61), respectively, for Paix and needs
0.043, 7.18, and 10.29 (0.052, 3.12, 3.4) �s, respectively, for
PB. Note that either DFEC or CNHA/CWA requires less
memory than PST (see Tables 2 and 4). (The platform uses
Pentium III with slightly faster speed (935.5 MHz versus
700 MHz in [9]), but has the same cache size.) Therefore, we
may conclude that DFEC and CNHA/CWA are better
(competitive) than the three Oðlog2jT jÞ structures (PST,
CRBT, and ACRBT) in terms of the average lookup time and
memory requirement (update times).

The FST and VST [21] can be implemented with varying
levels k such that each lookup time can be performed in
k MA: Smaller k requires larger memory. A technique in
[21], which is improved in [17], is used for optimizing
memory requirement for a selected k. The worst-case
lookup time for FST (VST) for k ¼ 3, as reported in [21], is
3 MAs + 31 clock cycles (3 MAs + 35 clock cycles), whereas
FEC requires 3 MAs + 3 clock cycles [2]. Both [2] and [21]
have used VTune in their measurements. On the other
hand, CNHA/CWA requires one or three MAs (required
clock cycles were not reported). Thus, we may conclude
that, for the worst-case lookup time, FEC is the fastest and
we conjecture that the speed of CNHA/CWA is comparable
to that of FST and VST.

Ruiz-Sanchez et al. [15] have shown that the lookup time
on FEC is faster than that on multibit trie. Further, [17, Table 4]
shows that the average lookup time of VST on Paix (PB) is 0.71
(0.64) �s, which is significantly slower than those required in
DFEC, 0.047 (0.043) �s, or CNHA/CWA, 0.066 (0.052) �s (see
Tables 2 and 4). Note that we have obtained these results by
using a slightly faster Pentium IV machine than that used in
[17] (that is, 3.2 versus 2.26 GHz). Nevertheless, we may
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TABLE 5
Route Prefix Insertion/Deletion Time on the CNHA/CWA Scheme



conclude that both DFEC and CNHA/CWA outperform VST
and FST in terms of the average lookup time. FST is only
slightly faster than VST [21].

The best three-level memory requirements of FST (VST),
as reported in [17, Table ] ([16, Table 2]), for Paix and PB are
3,030 and 2,328 Kbytes (1,080 and 677 Kbytes), respectively.
In comparison to these, Table 4 shows that CNHA/CWA
requires significantly less memory than either FST or VST
and Table 2 of our paper shows that DFEC requires less
(more) memory than that for FST (VST). Note that, for the
purpose of insertion and deletion in either FST or VST, for
each node X in the multibit trie, the algorithms in [21]
maintain a corresponding 1-bit trie with the prefixes that
are stored in X. We are not sure if the reported memory
requirements in [16], [17] include this auxiliary structure. If
not, their memory requirement will go up further.

Reference [17] has proposed three strategies for prefix
updates in VST: OptVST, Batch1, and Batch2. OptVST keeps
the best k-VST for the current set of prefixes, whereas the
others compute the optimal VST periodically. The batch
updates are reported faster than OptVST; however, a batch
insertion may increase the value of k [17]. Since our
techniques do not increase the MA times, we consider only
the OptVST. In terms of the insertion (deletion) time,
OptVST needs 325.95 and 71.25 (61.29 and 60.77) �s for Paix
and PB, respectively, in contrast to 3.68 and 4.06 (3.56 and
3.68) �s for DFEC, and 1.28 and 1.42 (1.55 and 1.51) �s for
CNHA/CWA. Thus, we may conclude that both DFEC and
CNHA/CWA are superior to VST in the average update
times: reference [17] does not provide the average update
times for FST.

6 CONCLUSION AND FUTURE WORK

We have proposed the use of decreasing lexicographic
ordered prefixes to reduce the construction time of the FEC
[2] and CNHA/CWA [5] structures. We have used the
prefixes to construct RLE sequences, which are used for
building FEC and CNHA/CWA. Our column-based RSE
technique, in contrast to the row-based one in [2], further
reduces the constructing time of FEC. Simulations on real
routing tables show that our approach constructs FEC tables
2.68 to 7.54 times faster than that in [2] and it constructs
CNHA/CWA tables 4.57 to 6 times faster than using the
algorithm in [5]. The properties of the decreasing lexico-
graphic prefixes can also be used for reducing the
construction time of other existing schemes, such as the
disjoint multibit trie [21].

Compressed-based IP lookup schemes provide fast look-
up times, with a trade-off for slow prefix update time [15].
Therefore, the schemes were typically not for use as dynamic
routers [1], [15] and offline data structure reconstruction was
assumed after some prefix updates on the routers. In contrast
to those results, we have used the updatable address set concept
to enable the compressed-based schemes, FEC [2] and
CNHA/CWA [5], for online prefix updates. Our simulations
show that the average prefix update time, by using our
techniques, is at most 10.1 (1.65) �s for FEC (CNHA/CWA)
while maintaining its three (one or three) MA lookup time. A
similar approach can also be employed to enable other
compressed-based schemes for online prefix updates.
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